INTERNATIONAL

e : Quick Start

VDOM Technology

Document version: Beta 0.9

Edition Date : | 08/10/08
Langage : | EN

Copyright © 2008 VDOM Box International OOD, All rights reserved.

The information published in this document represents the opinion of VDOM Box International as for the subjects tackled at the date of
publication. VDOM Box International having to answer fluctuating conditions of market, the information published in this document should not
be interpreted like an engagement of its share, VDOM Box International which cannot guarantee the precision of this information after the
date of publication.

This guide of evaluation is published only at ends of information. VDOM Box International does not offer any guarantee, express or implicit, as
for the contents of this document.

The subject tackled in this document can make the object of patents, patent applications, marks, copyright or other rights of ownership
intellectual belonging to VDOM International Box and/or Nicolas Korboulewsky. This document does not give you any right to these patents,
marks, copyright or another intellectual property, except in the case of a specific contract drawn up with VDOM International Box and/or
Nicolas Korboulewsky.

V.D.0.M., logo V.D.0.M., software suite, V.D.0.M., W.H.O.L.E. logo W.H.O.L.E. E2V.D.0.M., Logo E?V.D.0.M. are marks of trade or trademarks
under license by VDOM International Box in France and/or in other countries. The other names or marks belong to their respective owners.

VDOM Box International, Sofia 1220, Nadezkda bl 122 Ent. A

VDOM Technology

Table of Content

1. Introduction

1.1 WAt QS VSCIIPL 2uriiie ottt st sttt sttt ss s st sbe st st e e bes s aesereans 6
A T o T U =R OP RO 6

2. Basis of the language

2.0, VSCIIiPt DAta TYPE ottt ettt et e e ase e e sae st ae e sreae e nesnne 7
2.2 Variant SUDTYPE ..ottt st ettt et s e et see st stesbeaneeananrans 7
2.3.VAMADIES oottt e e bt st st eaes 8
2.3.1. Declaring variables 8
2.3.2. Scope and Lifetime of variables 8
2.3.3. Assigning values to variables 8
2.3.4. Scalar variables and array variables 8
2.4, CONSTANTS oottt sttt sttt et e st sae et be st saeesbbea e sae st betesaeesssen e sueaesbens 10
2.4.1. Creating Constants 10
B T O] o 1= - o] ST SSTRRSRSPE 10
2.5.1. Operator precedence 11
2.6. Using Conditional Stat@mMENTSccceceeiieriereieeetetst e sttt er v 11
2.6.1. Controlling Program Execution 11
2.6.2. Making decisions using If ... Then ... Else 11
2.6.3. Running statements if a condition is True 12
2.6.4. Running statements if a condition is true and other if it’s false 12
2.6.6. Deciding between several alternatives 12
2.6.7. Make decision with select case 13
2.7. Looping ThroUBh COEcuuiiiiieiie ettt ettt st sre e ea et e aes s senan 14
2.7.1. Using Do ... Loop 14
2.7.2. Repeating a statement while a condition is true 14
2.7.3. Repeating a statement until a condition becomes true 15
2.7.4. Exiting a Do Loop Statement from inside the Loop 16
2.7.5. Using While Wend 16
2.7.6. Using For Next 16
2.7.7. Using For Each Next 18
2.8. VSCIIPt PrOCEAUIES ...ttt sttt et ettt ste st st st e et b et an e ane s 19
2.8.1. Sub procedures 19

VDOM Technology

2.8.2. Function procedures 19
2.8.3. Getting data into and out of procedures 19
2.8.4. Using Sub and Function Procedures in Code 20
2.9 VSCIIPL ClaSSES uveuieiieiiieiietietire ettt etesteste st et aes s s easstestesae e s essessesaesarssasasesteseean 21
2.9.1. Define classes and create instances 21
2.9.2. Using Class Procedures 21
2.9.3. Defining and using Properties 22
2.9.4. Default property 22

3. VScript & VDOM Objects / Server Objects

3.1. VDOM ODBJECLS .eovveeetietietieeee e ite st stestestesese st st et ae s es e e e e st stesbesassnnenn et et aessensnnnen 24
3.1.1. Creating objects 24
3.1.2. Using objects 25
3.1.3. Get acces to foreign objects 25

3.2. EMbedded ODJECLS ...coci ettt sttt ettt st st st s bt e 26
3.2.1. Server 26
3.2.2. RegExp 26

3.3, VSCript HTTP ODEJCES .uoivivieeeeieeietietiet et sttt ev ettt st st st s e e eb s s e ans 28
3.3.1 Request 28
3.3.2 Response 29
3.3.3 Session 29

4. VScript & VDOM DB Acces

A1 GENEIAL ettt e st st st e ettt e b b st st s b se et ene 31
4.2, CONNECLION ittt ettt sttt sttt et sttt e s st st es e st st e ea e s saeensassseestesanaennes 31
4.2.1 Open a connection 31
4.2.2 Close a connection 31
4.3, QUENY TRE DB ...ttt et et ettt re b et et e e e sbe st ebeetesasessaebaesbessensnanes 32
4.3.1 Query that return data 32
4.3.1 Query that return no data 32

VDOM Technology

5. CookBook

5.1. PAge aCCESS CONLIOl oviiiieeieieeeee ettt et e et st st saestesas e s ab e s aessenan 34

VDOM Technology

Introduction

What Is VScript?

VDOM Server provides perfect possibilities of fast end easy creation of web applications. But at one
moment you will found yourself in need of additional functionalities, not supported by standard
components. In this case you may use possibility to write scripts with extended functionality.

VScript is the script language of VDOM Box Server. It’s similar to Microsoft’s VBScript syntax and
implements most of functions, types and objects of this language. We provide VScript with partial
support of ASP technology.

Easy to Use

Our solution allows easy migration for VBScript/ASP developers to our platform. They can start develop
web applications without significant time loses for adaptation to new language and environment.

Simple syntax, useful set of function and good usability are additional advantage for novice developers.

VDOM Technology

Basis of the language

VScript Data Types

As the VBScript, VScript has only one data type called a Variant. A Variant is a special kind of data type
that can contain different kinds of information, depending on how it is used. Because Variant is the only
data type in VScript, it is also the data type returned by all functions in VScript.

At its simplest, a Variant can contain either numeric or string information. A Variant behaves as a
number when you use it in a numeric context and as a string when you use it in a string context. That is,
if you are working with data that looks like numbers, VScript assumes that it is numbers and does what
is most appropriate for numbers. Similarly, if you're working with data that can only be string data,
VScript treats it as string data. You can always make numbers behave as strings by enclosing them in
quotation marks (" ").

Variant Subtypes

Beyond the simple numeric or string classifications, a Variant can make further distinctions about the
specific nature of numeric information. For example, you can have numeric information that represents
a date or a time. When used with other date or time data, the result is always expressed (with a little
exceptions) as a date or a time. You can also have a rich variety of numeric information ranging in size
from Boolean values to huge floating-point numbers. These different categories of information that can
be contained in a Variant are called subtypes. Most of the time, you can just put the kind of data you
want in a Variant, and the Variant behaves in a way that is most appropriate for the data it contains.

VScript support following subtypes:

Type Description
Empty Default value for uninitialized variant. Value is O for numeric variables or a zero-length
string (") for string variables.
Null Contains no valid data. This value is intentionally set like this.
Boolean Contains either True (equivalent to 0) or False (equivalent to -1).
Integer Contains integer in the range -2,147,483,648 to 2,147,483,647.
Double Contains a double-precision, floating-point number in the range -

1.79769313486232E308 to -4.94065645841247E-324 for negative values;
4.94065645841247E-324 to 1.79769313486232E308 for positive values.
Date (Time) Contains a number that represents a date between January 1, 100 to December 31,

9999.

String Contains a variable-length string that can be up to approximately 2 billion characters in
length.

Object Contains an object.

Table 1: VScript data types

VDOM Technology

Variables

A variable is a convenient placeholder that refers to a computer memory location where you can store
program information that may change during the time your script is running. In VScript, variables are
always of one fundamental data type, Variant.

Declaring Variables
You declare variables explicitly in your script using the Dim statement. For example:

Dim DegreesFarenheit

You declare multiple variables by separating each variable name with a comma. For example:

Dim Top, Bottom, Left, Right

Scope and Lifetime of Variables

A variable's scope is determined by where you declare it. When you declare a variable within a
procedure, only code within that procedure can access or change the value of that variable. It has local
scope and is a procedure-level variable. If you declare a variable outside a procedure, you make it
recognizable to all the procedures in your script. This is a script-level variable, and it has script-level
scope.

The lifetime of a variable depends on how long it exists. The lifetime of a script-level variable extends
from the time it is declared until the time the script is finished running. At procedure level, a variable
exists only as long as you are in the procedure. When the procedure exits, the variable is destroyed.
Local variables are ideal as temporary storage space when a procedure is executing. You can have local
variables of the same name in several different procedures because each is recognized only by the
procedure in which it is declared.

Assigning Values to Variables

Values are assigned to variables creating an expression as follows: the variable is on the left side of the
expression and the value you want to assign to the variable is on the right as in the many other
languages. For example:

B = 200

Scalar Variables and Array Variables

A variable containing a single value is a scalar variable. Other possible case is an array variable that can
contain many indexed values. Array variables and scalar variables are declared in the same way, except
that the declaration of an array variable uses parentheses () following the variable name. In the
following example, a single-dimension array containing 11 elements is declared:

VDOM Technology

Dim A(9)

Although the number shown in the parentheses is 9, all arrays in VScript are zero-based, so this array
actually contains 10 elements. In a zero-based array, the number of array elements is always the
number shown in parentheses plus one. This kind of array is called a fixed-size array.

You assign data to each of the elements of the array using an index into the array. Beginning at zero and
ending at 9, data can be assigned to the elements of an array as follows:

A(0) = 256

A(l) = 324
A(2) = 100
A(9) = 55

Similarly, the data can be retrieved from any element using an index into the particular array element
you want. For example:

SomeVariable = A(8)

Arrays aren't limited to a single dimension. You can have as many as 60 dimensions, although most
people can't comprehend more than three or four dimensions. You can declare multiple dimensions by
separating an array's size numbers in the parentheses with commas. In the following example, the
MyTable variable is a two-dimensional array consisting of 6 rows and 11 columns:

Dim MyTable (5, 10)

In a two-dimensional array, the first number is always the number of rows; the second number is the
number of columns.

You can also declare an array whose size changes during the time your script is running. This is called a
dynamic array. The array is initially declared within a procedure using either the Dim statement or using
the ReDim statement. However, for a dynamic array, no size or number of dimensions is placed inside
the parentheses. For example:

Dim MyArray ()
Redim AnotherArray ()

VDOM Technology

To use a dynamic array, you must subsequently use ReDim to determine the number of dimensions and
the size of each dimension. In the following example, ReDim sets the initial size of the dynamic array to
25. A subsequent ReDim statement resizes the array to 30, but uses the Preserve keyword to preserve
the contents of the array as the resizing takes place.

ReDim MyArray (25)

ReDim Preserve MyArray (30)

There is no limit to the number of times you can resize a dynamic array, although if you make an array
smaller, you lose the data in the eliminated elements.

Constants
A constant is a meaningful name that takes the place of a number or string and never changes.

Creating Constants

You create user-defined constants in VScript using the Const statement. Using the Const statement, you
can create string or numeric constants with meaningful names and assign them literal values. For
example:

Const MyString = "This is my string."
Const MyAge = 49

Note that the string literal is enclosed in quotation marks (" "). Quotation marks are the most obvious
way to differentiate string values from numeric values. You represent Date literals and time literals by

enclosing them in number signs (#). For example:

Const CutOffDate = #6-1-97#

You may want to adopt a naming scheme to differentiate constants from variables. This will prevent you
from trying to reassign constant values while your script is running. For example, you might want to use
a "vb" or "con" prefix on your constant names, or you might name your constants in all capital letters.
Differentiating constants from variables eliminates confusion as you develop more complex scripts.

Operators.
VScript has a full range of operators, including arithmetic operators, comparison operators,
concatenation operators, and logical operators as a VBScript.

Operator Precedence

When several operations occur in an expression, each part is evaluated and resolved in a predetermined
order called operator precedence. You can use parentheses to override the order of precedence and
force some parts of an expression to be evaluated before others. Operations within parentheses are

10

VDOM Technology

always performed before those outside. Within parentheses, however, standard operator precedence is
maintained.

When expressions contain operators from more than one category, arithmetic operators are evaluated
first, comparison operators are evaluated next, and logical operators are evaluated last. Comparison
operators all have equal precedence; that is, they are evaluated in the left-to-right order in which they
appear. Arithmetic and logical operators are evaluated in the following order of precedence.

Arithmetic: Exponentiation (#), Unary negation (-), Multiplication (*), Division (/), Integer division (\),
Modulus arithmetic (Mod), Addition (+), Subtraction (-), String concatenation (&).

Logical: Logical negation (Not), Logical conjunction (And), Logical disjunction (Or), Logical exclusion (Xor),
Logical equivalence (Eqv), Logical implication (Imp).

When multiplication and division occur together in an expression, each operation is evaluated as it
occurs from left to right. Likewise, when addition and subtraction occur together in an expression, each
operation is evaluated in order of appearance from left to right.

The string concatenation (&) operator is not an arithmetic operator, but in precedence it falls after all
arithmetic operators and before all comparison operators. The Is operator is an object reference
comparison operator. It does not compare objects or their values; it checks only to determine if two
object references refer to the same object.

Using Conditional Statements

Controlling Program Execution

You can control the flow of your script with conditional statements and looping statements. Using
conditional statements, you can write VScript code that makes decisions and repeats actions. The
following conditional statements are available in VScript:

e |f...Then...Else statement

e Select Case statement

Making Decisions Using If...Then...Else

The If...Then...Else statement is used to evaluate whether a condition is True or False and, depending on
the result, to specify one or more statements to run. Usually the condition is an expression that uses a
comparison operator to compare one value or variable with another. For information about comparison
operators, see Comparison Operators. If...Then...Else statements can be nested to as many levels as you
need.

Running Statements if a Condition is True

To run only one statement when a condition is True, use the single-line syntax for the If...Then...Else
statement. The following example shows the single-line syntax. Notice that this example omits the Else
keyword.

11

VDOM Technology

Sub FixDate ()

Dim myDate

myDate = #2/13/95#

If myDate < Now then myDate = Now
End Sub

To run more than one line of code, you must use the multiple-line (or block) syntax. This syntax includes
the End If statement, as shown in the following example:

Sub AlertUser (value)
If value = 0 Then

this.Label.color = "FF000O0"
this.Label.Font = "bold 12pt"
End if

End Sub

Running Certain Statements if a Condition is True and Running Others if a Condition is False
You can use an If...Then...Else statement to define two blocks of executable statements: one block to
run if the condition is True, the other block to run if the condition is False.

Sub AlertUser (value)

If value = 0 Then
this.Label.color = "FF000O0"
this.Label.Font = "bold 12pt"

Else
this.Label.color = "FFFF0O"
this.Label.Font = "bold 10pt"

End if

End Sub

Deciding Between Several Alternatives

A variation on the If...Then...Else statement allows you to choose from several alternatives. Adding Elself
clauses expands the functionality of the If...Then...Else tatement so you can control program flow based
on different possibilities.

For example:

Sub AnalyseCardType
CardType=Request.Form("CardType")

If CardType = "MasterCard" Then
DisplayMCLogo
ValidateMCAccount

ElseIf CardType = "Visa" Then
DisplayVisalLogo

ValidateVisaAccount

12 ¢

VDOM Technology

ElseIf CardType = "American Express" Then
DisplayAMEXCOLogo
ValidateAMEXCOAccount

Else
DisplayUnknownLogo
PromptAgain

End if

End Sub

You can add as many Elself clauses as you need to provide alternative choices. Extensive use of the Elself
inclauses often becomes cumbersome. A better way to choose between several alternatives is the Select
Case statement.

Making Decisions with Select Case

The Select Case structure provides an alternative to If...Then...Elself for selectively executing one block
of statements from among multiple blocks of statements. A Select Case statement provides capability
similar to the If...Then...Else statement, but it makes code more efficient and readable.

A Select Case structure works with a single test expression that is evaluated once, at the top of the
structure. The result of the expression is then compared with the values for each Case in the structure. If
there is a match, the block of statements associated with that Case is executed, as in the following
example.

Select Case Request.Form("CardType")
Case "MasterCard"
DisplayMCLogo
ValidateMCAccount
Case "Viga"
DisplayVisaLogo
ValidateVisaAccount
Case "American Express"
DisplayAMEXCOLogo
ValidateAMEXCOAccount
Case Else
DisplayUnknownLogo
PromptAgain
End Select

Notice that the Select Case structure evaluates an expression once at the top of the structure. In
contrast, the If...Then...Elself structure can evaluate a different expression for each Elself statement. You
can replace an If...Then...Elself structure with a Select Case structure only if each Elself statement
evaluates the same expression.

13

VDOM Technology

Looping Through Code

Looping allows you to run a group of statements repeatedly. Some loops repeat statements until a
condition is False; others repeat statements until a condition is True. There are also loops that repeat
statements a specific number of times.

The following looping statements are available in VBScript:
e Do...Loop: Loops while or until a condition is True.
e While...Wend: Loops while a condition is True.
e For...Next: Uses a counter to run statements a specified number of times.

e For Each...Next: Repeats a group of statements for each item in a collection or each
element of an array.

Using Do Loops
You can use Do...Loop statements to run a block of statements an indefinite number of times. The
statements are repeated either while a condition is True or until a condition becomes True.

Repeating Statements While a Condition is True

Use the While keyword to check a condition in a Do...Loop statement. You can check the condition
before you enter the loop (as shown in the following ChkFirstWhile example), or you can check it after
the loop has run at least once (as shown in the ChkLastWhile example). In the ChkFirstWhile procedure,
if myNum is set to 9 instead of 20, the statements inside the loop will never run. In the ChkLastWhile
procedure, the statements inside the loop run only once because the condition is already False.

Sub ChkFirstWhile ()
Dim counter, myNum
Counter = 0
myNum = 20
Do While myNum > 10
myNum = myNum - 1

counter = counter + 1
Loop
this.Label.value =_
"The loop made " & counter & " repetitions."
End Sub

Sub ChkLastWhile ()
Dim counter, myNum
Counter = 0
myNum = 9
Do
myNum = myNum - 1
counter = counter + 1

14

VDOM Technology

Loop While myNum > 10
this.Label.value =_
"The loop made " & counter & " repetitions."
End Sub

Repeating a Statement Until a Condition Becomes True

There are two ways to use the Until keyword to check a condition in a Do...Loop statement. You can
check the condition before you enter the loop (as shown in the following ChkFirstUntil example), or you
can check it after the loop has run at least once (as shown in the ChkLastUntil example). As long as the
condition is False, the looping occurs.

Sub ChkFirstUntil ()
Dim counter, myNum
Counter = 0
myNum = 20
Do Until myNum = 10
myNum = myNum + 1

counter = counter + 1
Loop
this.Label.value =_
"The loop made " & counter & " repetitions."
End Sub

Sub ChkLastUntil ()
Dim counter, myNum
Counter = 0
myNum = 1
Do
myNum = myNum + 1
counter = counter + 1
Loop While myNum = 10
this.Label.value =_
"The loop made " & counter & " repetitions."

End Sub

Exiting a Do...Loop Statement from Inside the Loop

You can exit a Do...Loop by using the Exit Do statement. Because you usually want to exit only in certain
situations, such as to avoid an endless loop, you should use the Exit Do statement in the True statement
block of an If...Then...Else statement. If the condition is False, the loop runs as usual.

In the following example, myNum is assigned a value that creates an endless loop. The If...Then...Else
statement checks for this condition, preventing the endless repetition.

15

VDOM Technology

Sub ExitExample ()
Dim counter, myNum
Counter = 0
myNum = 9
Do Until myNum = O
myNum = myNum - 1
counter = counter + 1
If myNum < 5 Then Exit Do
Loop
this.Label.value =_
"The loop made " & counter & " repetitions."

End Sub

Using While...Wend
The While...Wend statement is provided in VBScript for those who are familiar with its usage. However,
because of the lack of flexibility in While...Wend, it is recommended that you use Do...Loop instead

Using For...Next
You can use For...Next statements to run a block of statements a specific number of times. For loops,
use a counter variable whose value increases or decreases with each repetition of the loop.

The following example causes a procedure called MyProc to execute 50 times. The For statement
specifies the counter variable x and its start and end values. The Next statement increments the counter
variable by 1.

Sub DoMyProc50Times ()
Dim x
For x = 1 To 50
myProc
Next
End Sub

Using the Step keyword, you can increase or decrease the counter variable by the value you specify. In
the following example, the counter variable j is incremented by 2 each time the loop repeats. When the
loop is finished, the total is the sum of 2, 4, 6, 8, and 10.

Sub TwosTotal ()
Dim j, total
For j = 2 To 10 Step 2
total = total + j
Next
this.Label.value =
"The total is " & total
End Sub

16

VDOM Technology

To decrease the counter variable, use a negative Step value. You must specify an end value that is less
than the start value. In the following example, the counter variable myNum is decreased by 2 each time
the loop repeats. When the loop is finished, total is the sum of 16, 14, 12, 10, 8, 6, 4, and 2.

Sub NewTotal ()
Dim myNum, total
For myNum = 16 To 2 Step -2
total = total + myNum
Next
this.Label.value =
"The total is " & total
End Sub

You can exit any For...Next statement before the counter reaches its end value by using the Exit For
statement. Because you usually want to exit only in certain situations, such as when an error occurs, you
should use the Exit For statement in the True statement block of an If...Then...Else statement. If the
condition is False, the loop runs as usual.

Using For Each...Next

A For Each...Next loop is similar to a For...Next loop. Instead of repeating the statements a specified
number of times, a For Each...Next loop repeats a group of statements for each item in a collection of
objects or for each element of an array. This is especially helpful if you don't know how many elements
are in a collection.

For each name in request.servervariables
result=result & name & "-" &
Resquest.servervariables (name)
Next

17

VDOM Technology

VScript Procedures
In VScript, there are two kinds of procedures; the Sub procedure and the Function procedure.

Sub Procedures

A Sub procedure is a series of VScript statements (enclosed by Sub and End Sub statements) that
perform actions but don't return a value. A Sub procedure can take arguments (constants, variables, or
expressions that are passed by a calling procedure). If a Sub procedure has no arguments, its Sub
statement must include an empty set of parentheses ().

Sub ConvertTemp ()

temp = request.QueryString("Degreesg")
this.Label.value =
"The temperature is " & Celsius(temp) &

" degrees C. "
End Sub

Function Procedures

A Function procedure is a series of VScript statements enclosed by the Function and End Function
statements. A Function procedure is similar to a Sub procedure, but can also return a value. A Function
procedure can take arguments (constants, variables, or expressions that are passed to it by a calling
procedure). If a Function procedure has no arguments, its Function statement must include an empty
set of parentheses. A Function returns a value by assigning a value to its name in one or more
statements of the procedure. The return type of a Function is always a Variant.

In the following example, the Celsius function calculates degrees Celsius from degrees Fahrenheit.

Function Celsius (fDegrees)
Celsius = (fDegrees -32) * 5 / 9
End Function

Getting Data into and out of Procedures

Each piece of data is passed into your procedures using an argument . Arguments serve as placeholders
for the data you want to pass into your procedure. You can name your arguments any valid variable
name. When you create a procedure using either the Sub statement or the Function statement,
parentheses must be included after the name of the procedure. Any arguments are placed inside these
parentheses, separated by commas. For example, in the following example, fDegrees is a placeholder for
the value being passed into the Celsius function for conversion.

Function Celsius (fDegrees)
Celsius = (fDegrees -32) * 5 / 9
End Function

18

VDOM Technology

To get data out of a procedure, you must use a Function. Remember, a Function procedure can return a
value; a Sub procedure can't.

Using Sub and Function Procedures in Code
A Function in your code must always be used on the right side of a variable assignment or in an
expression. For example:

Temp = Celsius (fDegrees)

Or

Message = "The temperature is " & Celsius(temp) &
" degrees C. "

To call a Sub procedure from another procedure, type the name of the procedure along with values for
any required arguments, each separated by a comma. The Call statement is not required, but if you do
use it, you must enclose any arguments in parentheses.

The following example shows two calls to the MyProc procedure. One uses the Call statement in the
code; the other doesn't. Both do exactly the same thing.

Call MyProc (firstard, secondarg)
MyProc firstarg, secondard

Notice that the parentheses are omitted in the call when the Call statement isn't used.

19

VDOM Technology

VScript Classes
As many hi-level languages VScript allow declaring and using classes. Classes may make easy to create,
understand and support you code

Define Classes and Create Instances
To declare class you can use statement class as in following example:

Class Person
Dim Name, Sex, Birthday
End Class

Here we declare class Person with three class variables : Name, Sex, Age. To use this class we must
create an instance:

Dim Andy
Set Andy = New Person
Andy.Name = "Andy"

Andy.Sex = 0
Andy.Birthday = #12-03-1982#

To create an instance we use keyword New and to assign new instance to the variable we use statement
Set.

Using Class Procedures
Except for variables we can declare class procedures. For Example:

Class Person
Dim Name, Sex, Birthday
Sub ChangeName (value)
This.LabelName.value = Name
This.LabelAge.value = Age
End Sub
Function Age
Age=DateDiff ("yyyy", Birthday, Now)
End Function
End Class
There example how to use these methods:

Andy.ChangeName "Andy Jr."
this.LabelAge.value = Andy.Age

Defining and Using Properties

Properties are special procedures that can get or set class variables in a special way. There are three
types of class procedures that can describe property: Get, Let and Set. Property Get statement used to
define get procedure of property. It's must return property value. Property Let and Property Set

statements used to assign some value to property. Only one of these procedures may be declared at a
20

VDOM Technology

time. To declare read-only property we must only define Property Get procedure. To declare write-only
property we must define only Property Let or Property Set. To define read/write property we must

define both procedures. There is example:

Class Person
Dim Name, Sex, Birthday
Property Get SexString
If Sex=0 Then
SexString="Male"
Else
SexString="Female"
End if
End Property
Property Let SexString(value)
If value="Male" then

Sex=0
Else
Sex=1
End if
End Property
End Class
Default Property

One property in a class may be default property. It’s a property that will be returned while using class

name in expressions. For example:

Class Person
Dim Name, Sex, Birthday
Dafault Property Get DefaultProperty
DefaultProperty = Name
End Property
End Class

There we declare class with default property DefaultProperty. Now when we use class name it will

return Name of the person:

Dim Andy

Andy = new Person

Set Andy.Name = "Andy"
this.LabelName.value=Andy

21

VDOM Technology

VScript & VDOM Object / Server Objects

Main task of VScript is manipulating VDOM objects and their attributes. Each scripts are attached to a
VDOM container and executed before the container rendering process.

Creating objects
VScript allow to dynamically create new VDOM Object during the execution of the Web application, this
is very useful and flexible way to create dynamic content inside web application.

This mechanism is equivalent to create new controls in common desktop application.
To create new VDOM Objects you need to use a special embedded server object named server like this.

Dim myDynamicText
Set myDynamicText = server.CreateObject ("73a54f2e-4001-
4676-93a0-804048a57081",this.ID)

Each VDOM object has a unique identifier, this one is needed to create the related VDOM object, you
can find here a non exhaustive list of VDOM Object

Name ID Function

Bar 91a12281-c9a8-430a-8a2d-93903b4a264f Create a colored rectangle

Breadcrumb 8a1650eb-17e5-4944-9¢56-0a9817cel665 Breadcrumb for navigation

Button 315381b8-f3f1-496¢c-92be-b65ebdd6b8al A picture with rollover and link to an other container
Calendar b20c407a-2c83-4646-b64d-a82f5db26490 A calendar picker

Container 81d947af-1548-4a96-ale0-d8a4c67cbec2 A logical container to group objects

DbHtmIView 76f84567-ca9a-45de-9bbb-d5f13eabal54 HTML feeded by a SQL request on DbSchema container
DbSchema 753ea72c-475d-4a29-96be-71c522ca2097 Container of relation database (Tables)

DbSimple 3a9827f6-0dd5-4239-9544-6e42ef0085ce HTML feeded by a Table in a DbSchema container
DbTable 92269b6e-4b6b-4882-852f-f7ef0e89c079 VDOM Object that represent a Table

Debug 246a9164-487b-4f75-944b-2a6907b2b078 Output text for debugging information

Form 34f6ee59-9c50-4503-97c1-86c4e86bd1b7 Container to create a Form

FormButton 5be544cb-3d6b-4b75-ae79-b071fbe46094 A standard Form button

FormCheckBox 8077aalc-6762-4719-a6ea-fdfbObcfaOc2 A standard Form Ul checkbox

FormDropDown 7029560a-cal7-4e32-a058-cf82b8facc33 A standard Form Ul DropDown

FormPassword 6555559f-3092-49bd-8b91-cal5bal0a373 Astandard Form Password field

FormRadioButton 213f1e8c-8a3e-452b-af33-4ca3139fe960 A standard Form Ul RadioButton

FormRadioGroup 5ec776c5-23f6-4098-a69d-600b08b220b0 A standard Form Ul RadioGroup

FormText 410ce9c6-5ae0-4c66-9c2b-80b7470e2927 A standard Form Text field

FormUploader 823833ac-0f63-431c-82e7-0a502af21c65 A special field to provide Ul file navigation

HTML 7085bd26-e653-490b-908f-61208c260a86 To inject direct HTML in the container

Image 0d36¢35d-9508-440f-bfec-668f3db8cfeb Show a picture

Menu 03741d38-c9f3-4526-ach9-71c7aa00b3b2 Create a set of button according to the application tree struct.
RichText 82a69b02-9fba-47d0-b206-6fd1769b0ebd Text with advanced WYSIWYG functions
SensitiveZone 7b39¢919-de7f-4b77-b048-aae8bcf8edf5 Transparent rectangle clickable.

Table 4858cfb6-735e-47be-b500-d63720fc4119 Table container

TableCell 3de32e4a-1493-49c3-add7-ddf8738e1530 Table Cell container

TableRow 19a2a656-40f1-43ca-9eba-eb55d033b1d4 Table Row container

73a54f2e-4001-4676-93a0-804048a57081 Simple text with uniform attribute like font, size, ...
1052fb85-22db-40e9-a4el-5b1ela3b2280 Show the current time.

22

VDOM Technology

Using objects
When scripts are executed container that owns this script map it to a special object named “this”. It
allows access to container’s objects and attributes, etc...

All attribute of each object (container & terminal objects) are available thru a standard dot notation.
This example shows how to get title attribute value of the current container:

Dim Title
Title = this.Title

To set the value to this attribute we write:

this.Title = "New Title"

The access of any child object contain in the current container use also the dot notation like this:

this.childObject.color = "FFFFFF"

Get access to foreign objects
It could be needed to be able to modify or interact with object outside the current container, to perform
this action you needed to use a special method on server object.

Dim Label
Label = server.GetObject ("7076ef50-ddb2-4809-9741-
1389454ab6de")

This number 7076ef50-ddb2-4809-9741-1389454ab64e is the unique identifier of the object
inside the internal server VDOM Memory.

23

VDOM Technology

Embedded objects

Server

The Server object is designed to access to the methods and properties of the server. Most of these
methods and properties serve as utility functions. These methods are divided into two groups: objects
manipulation, we have already discussed of them and auxiliary functions. These one are HTMLEncode
and URLEncode.

The HTMLEncode method applies HTML encoding to a specified string. This is useful to encode form
data and other client request before using it in your Web application. Encoding data converts potentially
unsafe characters to their HTML-encoded equivalent.

If the string to be encoded is not DBCS, HTMLEncode converts characters as follows:
e The less-than character (<) is converted to <.
e The greater-than character (>) is converted to >.
e The ampersand character (&) is converted to &.

e The double-quote character (") is converted to ".

Any ASCII code character with a value greater-than or equal to 0x80 is converted to &#<number>, where
<number> is the ASCII character value.

The URLEncode method applies URL encoding rules, including escape characters, to a specified string.

URLEncode converts characters as follows:
e Spaces () are converted to plus signs (+).

e Non-alphanumeric characters are escaped to their hexadecimal representation.

RegExp
Regular expression (RegExp) object provides simple regular expression support. The following code
illustrates the use of RegExp object.

24

VDOM Technology

Dim regex, match, matches, result

Set regex=new regexp

regex.pattern="w."

regex.ignorecase=true

regex.global=true

set matches=regex.execute ("wl w2 w3")

for each match in matches
result=result & "position " & match.firstindex
result=result & " value " & match.value & ";"

next

RegEx object use usual regular expression syntax and has three property: Global, IgnoreCase and
Pattern.

Global property sets or returns a Boolean value that indicates if a pattern should match all occurrences
in an entire search string or just the first one.

IgnoreCase property sets or returns a Boolean value that indicates if a pattern search is case-sensitive or
not.

And Pattern property sets or returns the regular expression pattern being searched for.
Besides RegEx object has three method: Execute, Replace and Test.

Execute method executes a regular expression search against a specified string as in previous example
and has one argument - string upon which the regular expression is executed. The Execute method
returns a Matches collection containing a Match object for each match found in string. Execute returns
an empty Matches collection if no match is found.

Replace method replaces text found in a regular expression search. Its has two arguments: first string is
the text string in which the text replacement is to occur and second string is the replacement text string.
There is an example:

result=regex.replace("wl w2 w3",6 "w")

In this example we replace character pairs starts with “w” to character “w” .

And method Test executes a regular expression search against a specified string and returns a Boolean
value that indicates if a pattern match was found. Its has only one argument - string upon which the
regular expression is executed. Example:

result=regex.test ("wl")

25

VDOM Technology

VScript HTTP Objects

To support programmer we emulate some standard ASP objects that facilitate writing scripts. There are
four objects: Server, Request, Response and Session.

Request

The Request object retrieves the values that the client browser passed to the server during an HTTP
request. The Request object defines the following properties: Cookies, Form, QueryString.
ServerVariables

All variables can be accessed directly by calling Request(variable) without the collection name. In this
case, the Web server searches the collections in the following order:

e QueryString

e Form

e Cookies

e ServerVariables

If a variable with the same name exists in more than one collection, the Request object returns the first
instance that the object encounters.

Example of using request object:

For each name in request.servervariables
Result=result & name & "-"&
Request.servervariables (name)
Next

The Cookies collection enables you to retrieve the values of the cookies sent in an HTTP request.

The Form collection retrieves the values of form elements posted to the HTTP request body, with a form
using the POST method.

The QueryString collection retrieves the values of the variables in the HTTP query string. The HTTP query
string is specified by the values following the question mark (?).Query strings are also generated by
sending a form or by a user typing a query into the address box of the browser.

The ServerVariables collection retrieves the values of predetermined environment variables and request
header information.

Server variables obtain most of their information from headers. It is wise to not trust the data that is
contained in headers, as this information can be falsified by malicious users. For example, do not rely on
data such as cookies to securely identify a user.

26

VDOM Technology

Response
You can use the Response object to send output to the client. This object contains AddHeader and
Redirect methods and Cookies collection.

The AddHeader method adds a new HTML header and value to the response sent to the client. It does
not replace an existing header of the same name. After a header has been added, it cannot be removed.

The Redirect method causes the browser to redirect the client to a different URL.

The Cookies collection sets the value of a cookie. If the specified cookie does not exist, it is created. If
the cookie exists, it takes the new value, and the old value is discarded.

The IsClientConnected property is a read-only property that indicates if the client has reset the
connection to the server.

Session

You can use the Session object to store information needed for a particular user session. Variables
stored in the Session object are not discarded when the user jumps between pages in the application;
instead, these variables persist for the entire user session.

The Web server automatically creates a Session object when a Web page from the application is
requested by a user who does not already have a session. The server destroys the Session object when
the session expires or is abandoned.

Methods / Property of the session objects

Abandon : Destroy the current session of the user

Session.Abandon
// Not implemented in server ver 0.9.2930

e Timeout : allow to set or read the current session timeout

Session.Timeout = 100000 ‘value in millisecond
Or
SessoinTout = Session.Timeout

// Not implemented in server ver 0.9.2930

Sessionld : (ReadOnly) get the current identifier of the session

ID = Session.SessionId

Variables

‘Store a variable
Session.Variables ("MyVarName") = MyVar

27

VDOM Technology

‘Retrieve a variable
MyVar = Session.Variables ("MyVarName")

The Timeout property specifies the time-out period assigned to the Session object for the application, in
minutes. If the user does not refresh or request a page within the time-out period, the session ends.

28

VDOM Technology

VScript & VDOM DB Acces

General

The VDOM server provide a complete DB solution based on Sqlite. But the user don’t manage directly
the DB, it use the VDOM Object model for it.

A data base in VDOM is created upon a DBSchema container, this container contain DB Table Object
that represent a standard relational database.

Some object can directly use this Db model like simple Db or DB HTML View, but all application can’t use
directly this direct connection and need some script to manipulate data.

VScript provide a complete acces to DB thru different embedded object.

Connection Object

Open a connection
The first operation to perform is to connect to the DB, as we explained upper a DB for VDOM is an
object, the connection is made like this:

Dim connection
Set connection = new vdomDbConnection
Connection.open ("mydb")

vdomdbconnection isthe embedded object used to connect to the DB
it has one method open with the name of the Db Schema in agrmument.

Close a connection
To free resources and safely terminate DB operation a connection has to be closed with the method
close.

Connection.close

29

VDOM Technology

Query the DB

A query can or not return data, a SELECT query will return a amount of data stored into a special object
named recordset, but the UPDATE & DELETE query will return nothing and can be perform with another
method. Those two case have their own method to be executed, the first one use query and the
second execute.

Query that return data

Dim connection, recordeset, record

Set connection = new vdomDbConnection

Connection.open ("mydb")

Set recordset=connection.query ("SELECT * FROM myTable")

this.myText.value = ""

for each record in recordset

this.myText.value = this.myText.value +_
"ChampO:" + cstr(record(0)) + "
"
this.myText.value = this.myText.value +_
"Champl:" + cstr(record(l)) + "
"
this.myText.value = this.myText.value +_
"Champ2:" + cstr(record(2)) + "
"
this.myText.value = this.myText.value +_

next

connection.close

Query that return no data

Dim connection

Set connection = new vdomDbConnection

Connection.open ("mydb")

connection.execute ("INSERT INTO myTable
VALUES ‘1’,’2" ")

connection.close

30¢

oooooooooooooo

VDOM Technology

Page access control

General

The VDOM HTML Container provide a easy solution to control the access to container with two simples
properties.

This example will show you how connect the user control access with simple script.

Application

The application is a simple website with to secure space, to enter in the secure space you need to log in,

if the user login & password is wrong you will be redirect to an access denied page (figure 2), all the user
information are stored into the VDOM DB.

HOME PAGE

PARTNERS PRODUCTS

CONTACTS

VDOM BOX

Service Area

You need to be a customer to have access to this space.

VDOM Box Research teams have devoted their effors to
— democratising web applications. The solutions on offer are
_PARTNERS designed to eliminate any existing limitations, from both a
To access the secure Partner area, you must enter the login and Developer and a User perspective.
password you received via e-mail,
" VDOM Box Research has used the cultural diversity of its teams
) Send to innovate and offer you the VDOM Box, a dedicated server
Password:

which not only provides optimised hosting of web applications,
butis also a source of unlimited freedom for its users.

The VDOM Box gives you the ability to meet new market
requirements, to diversify your offering, and to totally eliminate
CLIEN | the barriers that stand between your partner-clients and their
The guickest way to obtsin help when you need it i to use the resources applications.
at your dispesal in your dedicated client area. Please enter your login and
password below,

Login:

Password:

Figure 1: application first page

32

VDOM Technology

HOME PAGE PARTNERS PRODUCTS CONTACTS

Acces Denied

Figure 2: Access denied page

4 VvDOM XML (Figure 1)

<HTMLCONTAINER name="Home_Page" description="First page of the web site" title="Home Page">
<IMAGE name="imgServiceAerea" top="383" value="B0faffed-d30c-4299-a7e4-4adbe2dB4cT3" height="129" zindex="1" width="397" left="48"/>
<IMAGE name="bandeau" value="ed5cechf-ad2{-40a6-8134-ab2322e2cbba" height="768" width="373"/>
<FLASHANIMATION name="FlashBox" top="135" height="134" zindex="0" width="T20" file="t393eb27-3773-43t-alla-alZ| Taeeecla" left="202"/>
<RICHTEXT name="txtInfpService" top="820" zindex="1" width="372" left="08">
<Mttribute Name="value"><![CDATA[Service
Area<div>
</div><div style="text-align:
justify">You need to be a customer to have access
to this space.Gnbsp;</div>]]></ Mtribute>
</RICHTEXT>
<RICHTEXT name="vdom_box" top="33" zindex="1" width="34B" left="044">
<Mtribute Name="value"><I[CDATA[<p align="justify">VDOM Box
Research teams have devoted their efforts to democratising web applications. The solutions on offer are designed to eliminate any existing limitations, from both a
Developer and a User perspective.</p><p align="justify"><span style="font-family: arial, helvetica, sans-serif"
class="Apple-style-span">VDOM BoxGnbsp:Researchénbsp:has used the cultural diversity of its teams to innovate and offer you the VOOM Box, a dedicated server which
not only provides optimised hosting of web applications, but is also a source of unlimited freedom for its users.</p><p

33

VDOM Technology

align="justify">The VDOM Box gives you the ability to meet new market
requirements, to diversify your offering, and to totally eliminate the barriers that stand between your partner-clients and their
applications.</fant></p>]]></ Attribute>
</RICHTEXT>
<TEXT name="txtCopyright" top="708" value="Copyright® 2008 - V.D.0.M. Box Research - all right reserved" zindex="5" width="860" color="FFFFFF" align="center"
left="a4"/>
<FORM name="formPartner" ="799ac020-341-441c-3435-6cB8f0lalbal" top="412" ="05" ="I" width="367" left="63">
<TEXT name="textInfoPartner" value="To access the secure Partner area, you must enter the login and password you received via e-mail." width="331"
fontsize="10"/>
<TEXT name="textPartnerLogin" top="34" value="Login:" width="16l" fontsize="10" left="10"/>
<TEXT name="textPartnerPass" top="09" value="Password." width="100" fontsize="10" left="3"/>
<FORMBUTTON name="formbutton_39c7bcca_cBB8 43fc_b7392 Bb33afth2da4b" top="39" left="245"/>
<FORMPASSWORD name="partpassword" top="6l" height="2!" width="38" left="62"/>
<FORMTEXT name="partlogin" top="33" width="98" left="62"/>
</FORM>
<FORM name="formClient" top="033" height="113" zindex="3" width="360" left="BE">
<TEXT name="text_3Ra40cZe_GfeB 45ad baba_Zbbb3527308b" top="2" zindex="0" width="334" fontsize="10" left="5">
<Mttribute Name="value"><![CDATA[The quickest way to obtain help when you need it is to use the resources at your disposal in your dedicated client area.
Please enter your login and passward below.J]></Attribute>
</TEXT>
<TEXT name="text_|6891cdd_B6Zd_4f08 b786_3b78Ib773dB4" top="52" value="Login:" width="32" fontsize="10" left="6"/>
<FORMBUTTON name="formbutton_a954f321_8e22 44d2_b7b3 facbbaBc3Z89" top="63" left="243"/>
<FORMTEXT name="formtext_B2f21479_8715_4ad7 ba3d_54830468cEfd" top="0l" zindex="0" width="96" left="68"/>
<TEXT name="text_4aflifa34_5587 44fa_3005_fb221d14405f" top="83" value="Password:" width="63" fontsize="10" left="5"/>
<FORMPASSWORD name="formpasswaord_ee7l0aa0_baf7 478 8731 _88bdchcefcad" top="78" width="98" left="67"/>
</FORM>
<IMAGE name="imgFond" top="709" value="e62bcBI3-fd54-40fl-aec4-Id3aebebI4eb" height="17" zindex="1" width="870" left="33"/>
<IMAGE name="imgClientAerea" top="028" value="B0f5ffe3-d30c-4299-aTe4-4a3be2dB4cT3" height="129" zindex="1" width="337" left="al"/>
<RICHTEXT name="Partners" top="391" zindex="a" left="72">
<Mtribute Name="value"><![CDATA[PARTNERS]]></ Attribute>
</RICHTEXT>
<RICHTEXT name="CLIENT" top="03B" zindex="0" left="E8">
<Mttribute Name="value"><![CDATA[CLIENTS]]></ Attribute>
</RICHTEXT>
<TEXT name="userloggedpart" visible="0" top="432" value="User Logged" zindex="0" width="367" align="center" left="60"/>
<SENSITIVE name="sensitive_cable36f_b00_4aB8_bB3f elebSetclfd" containerlink="293ac020-34If-441c-3435-6cB8f01albal" top="T" zindex="0" width="74"
left="3BI"/>
</HTMLCONTAINER>

In this code two objects are important FROM container and TEXT, by script we are going to modify some
of their values to take care about the current login state.

1 select case cstr(Session.variables ("loggedon"))
2 case ""

3 this.userloggedpart.visible=0

4 case "partner"

5 this.formPartner.visible=0

6 this.userloggedpart.visible=1

7 this.userloggedpart.value="User

8 "+Session.variables ("useridentity")+"
9 logged"

10 case "client"

11 this.formClient.visible=0

12

13 end select
In this VScript code we can see the acces to the VDOM object of the current container by
this.objectName.attribut.

34

VDOM Technology

HOME PAGE /. PRODUCTS

7 October, 2008

@ <

wk | Mon

Tue

CONTACTS

Korboulewsky Nicolas

NEWS:

Today 5 » Here some text
Wed Thu Fri Sat Sun

40
41 [
42(13
43 20
44 27

7
14
21
28

{. 7 % 4 .5

5 Hg 41 12
35 s B 49
n B ¥ B B
23 3 3t

Select date

U w N

N O

10
11
12

Figure 3: Access ok

dim connection, SecurityData
Set connection = new VdomDbConnection

if cstr(Session.variables ("SecurityCode"))="" then

if request.form("partlogin")<>"" and
request.form("partpassword")<>"" then
connection.open ("applidb")

Set SecurityData = connection.query ("SELECT
SecurityCode, name, surname FROM user WHERE
Login='"+request.form("partlogin")+""' AND
Password="'"+request.form("partpassword")+"'")

For each record in SecurityData

Session.variables ("SecurityCode")=record(0)

Next

Session.variables ("useridentity") = record(1l) +

" "trecord(2)

35

VDOM Technology

13 this.useridentity.value =_
Session.variables ("useridentity™")

14 Session.variables ("loggedon") ="partner"

15 connection.close

16 else

17 wscript.echo "No login and/or password"

18 end if

19 else

20 this.useridentity.value =

Session.variables("use;identity")
21 end if

4 VDOM XML (Figure 3)

<HTMLCONTAINER name="FormPartner" description="Partner space" title="Welcome Partner" securitycode="gql3Zd|" deniedlink="a3de8Baa-32a3-42ef-86d3-
f247215deB439">

<COPY name="copyBandeau" source_object_cache="2923blc0-9e28-4f8e-b316-edG752001Zcf" zindex="0" source_object="2923blc0-9e28-4f8e-b3I6-
edB7a20012ct"/>

<COPY name="copylLgn" top="664" source_object_cache="18aa73b4-2334-4aT7-b3c!-ba4d46809e4" zindex="0" source_object="18aa73b4-2334-4aT7-b3cl-
|b54d4BB0Te4" left="20"/>

<COPY name="copyCopyright" source_object_cache="8b22639a-77d2-4663-853b-0a9837e31960" zindex="0" source_object="8b2263%a-77d2-4663-853b-
0ad837e31960"/>

<SENSITIVE name="sensitive_Ba43010b_eaba_4bb8_bf49_5cl7344B7137" containerlink="036053fc-aa28-4a02-8371-481578ab05e8" top="T" zindex="10" width="103"
left="7T"/>

<TEXT name="useridentity" top="203" value="Welcome name surname" zindex="10" align="right" left="014"/>

<COPY name="Copyfond" top="709" source_object_cache="f8a4025c-7722-48de-be3B-061596006ddc" zindex="10" source_ohject="f8a4020c-7722-48de-he38-
6199R00Rddc" left="03"/>

<TEXT name="text_dI73chic_2d30 4bBc_84fl Bacdl32hccBf" top="240" value="NEWS:" zindex="10" left="328"/>

<BAR name="bar_93bcBcce_Badh 4c3e Sbel b2b7aB058306" top="260" height="434" zindex="10" width="085" color="ERERER" left="378"/>

<RICHTEXT name="richtext_aeB42ef? 7614 4c03 bdaB 1623dbel7974" top="265" value="Here some text" zindex="10" width="073" left="333"/>

<FORM name="sendcalendar" target="799ac020-34!f-441c-3495-6cBBlalbal" top="242" height="183" zindex="10" width="268" left="60">

<CALENDAR name="calendar" todayColor="ffeeaa" skin="/ae4|74eb-Ja79-412e-81ad-e7186d603935.res" borderColor="665555" top="7" titleFontColor="ffeedd"

fontSize="Il" dayNameColor="ffeedd" weekColor="ffeedd" headFontColor="000000" dateAreaColor="ffffdd" navigationPanelColor="geddcc" tipColor="ddcchb"
tipFontColor="884400" headColor="eeddcc" todayFontColor="0000f" weekendColor="ff{0000" titleColor="662544" left="7"/>

</FORM>
</HTMLCONTAINER>

The security acces page is based on an attribute of HTML container name securitycode as shown upper,
if a special session variable (Session.variables("SecurityCode")) is equal to one of the code saved in this
attribute the page will be shown if not it will be redirect to the container provided in the deniedlink
attribute.

The upper code shows how we get this value from the database and save it to the session variable. No
more code is needed to provide a complete security access management.

36

