\ S D O \%S EI(@)

INTERNATIONAL

POWER
- PACK®

PowerPack Builder
User Manual

Développ? POV

=
= i
= =
=
=
=
=
=

o 'gna|.EcT'
.;n\ernatl
om‘bﬂ‘x

VDOM Technology / Power Pack

Copyright © 2008 VDOM Box International OOD, All rights reserved.

The information published in this document represents the opinion of VDOM Box International as for the subjects tackled at the date of
publication. VDOM Box International having to answer fluctuating conditions of market, the information published in this document should
not be interpreted like an engagement of its share, VDOM Box International which cannot guarantee the precision of this information after
the date of publication.

This guide of evaluation is published only at ends of information. VDOM Box International does not offer any guarantee, express or implicit,
as for the contents of this document.

The subject tackled in this document can make the object of patents, patent applications, marks, copyright or other rights of ownership
intellectual belonging to VDOM International Box and/or Nicolas Korboulewsky. This document does not give you any right to these
patents, marks, copyright or another intellectual property, except in the case of a specific contract drawn up with VDOM International Box
and/or Nicolas Korboulewsky.

V.D.O.M., logo V.D.0.M., software suite, V.D.O.M., W.H.O.L.E. logo W.H.O.L.E. E?V.D.0.M., Logo E2?V.D.O.M. are marks of trade or

trademarks under license by VDOM International Box in France and/or in other countries. The other names or marks belong to their
respective owners.

VDOM Box International, Sofia 1220, Nadezkda bl 122 Ent. A

VDOM Technology / Power Pack

Table of Content

Introduction
POWEIPACK OBJECTIVES ..cvecveceeieeeeeer ettt ettt st ettt et et r et e ab et e e sbesbesbeebesteanesrsessaeraenean 4
VDOM Application & VDOM BOXceeeeverueririeineesiestesreseesessessessaesesssessssseessessesnes 4
Graph oriented XIML GENEIAtorcccccvivieeeierietieee et s ee e st s s e e e 4

Power Pack Standard Design

Graph oriented modeling, functional description ... 6
Add @ NOde tO the Braph ..ot s st st et 6
MOdify @ NOAE VAlUB......cectieeeeeeee ettt et ettt sae et st snenatenes 7
MOAIfY @ NOAE TYPE ettt sttt te st e e st beben e e atesaean 7
F Yo o 1= TR =Y 314 o] o O TSRS 7
Y AT Y <{= <=1] TSRO 8
StAaNdard COMMANGSc.ccueieirtirece ettt e e s s ss s eneasestesreen 9
T OES ittt ettt ettt sttt et et st b e e st et et saeeeebennte s et aesbeenteeraes 10
(@0 =T =) 4 o] o [OOSR 10
FUNCLIONS ottt ettt ettt et st st st b e et se et ea s e e et sae st sueeneannens 11
Advance variable declaration ... e 13

VDOM APPlCation XIMIL FIlEcoevieiiiieeieeirrirt et ee sttt es v s e e s st st see e s besaesesseseans 13

General graph & Matrix importation of the XML Structureooveevecvecviveseece e 15
Main EENEIAl Braph oot et st st e e r e 15
2T LU ol I F=1 - SRR 17
STPUCTUNE SECTION ..ttt ettt et e st st st b et et se st en s e sben s 19

LiSt data StIUCTUIE oececie ettt sttt bt sr e st st sre s enaas 20
Graph engine to Add/Update/Remove data in graph list structure 21

Power Pack Advanced functions

Advanced graphic fUNCLIONScoiie ettt e e et e 22
Sub-list used as parameter in graphic functioncccceveieinircce e, 22
Main graphic fUNCLIONScceeuecietietee ettt st et eer e s 23
Advanced list manipulation fUNCLIONScueueiecee e e 27

Power Pack Debug Mode

GeNeral PreSENtAtioN ...t sttt sbe s sr e ateraes 30

VDOM Technology / Power Pack

Introduction

VDOM Server use XML file to describe and store a VDOM application,
the Power Pack are designed to generate this file, this section will
introduce why and how we do it.

1. PowerPack Objectives
1.1 VDOM Application & VDOM Box

The VDOM Box Appliance is designed to run VDOM Applications, a VDOM application is made
of a XML file. An XML file is a text oriented file with an internal structure based on Tags. This file can
be easily generate by any software witch can write ASCIl or any other characters encoding system.

To create a VDOM Application we can use the VDOM IDE connected to a VDOM Box, in this
case it’s the server software that create and update the VDOM Application XML File. This way is the
most common way to create a VDOM Application.

But it appears that Web Application can also be categorized in several generics applications,
to save developing time it could be useful to pre-generate a basic (or even complex) template
structure of this application, we can even imagine to completely generate a full functional
application.

To generate a VDOM Application we need in fact to create the XML file of this application to
be able next to install it on the VDOM Box. We can also imagine to directly install it from the Power
Pack reader by a direct connection to the VDOM Box.

This documentation will describe the use of the Power Pack Builder and the concepts linked
to it.

1.2 Graph oriented XML Generator

The Power Pack software is in fact a XML generator as you have understand, but what we would
like is to be able to generate not only a strict copy of a template but to be able to generate some
variations of it. To do it we can use a non determinist oriented graph. The idea is to follow a graph
where each node contain a part of the XML text to generate, each node are connected to an other
one, but many link can start from a node to others one. If this situation happen the choice to follow a
special link is done randomly.

VDOM Technology / Power Pack

<Tag Attribute=’

Value_1

Value_2

Value_3

Figure 1: Graph example.

So depending of the link followed the result can be <Tag Attribute="Value 1'>; <Tag

Attribute="Value_2'>; <Tag Attribute="Value_3'>, this demonstrate how to introduce variation into a

template. The Power Pack Builder will be software than enable the user to create this graph and test

it, those graphs will be store as file. The Power Pack Reader will use this file to generate VDOM

Applications; it will create XML File or directly install it on a VDOM Box.

VDOM Technology / Power Pack

Power Pack Standard Design

This section will first introduce you the graph oriented design and
then describe the VDOM XML file specification to allow you to generate
it with the Power Pack Builder tool.

1. Graph oriented modeling, functional description

To generate the XML file we are using graph oriented model, it consist in a set of nodes and
arrows (called transition) connecting the nodes, each arrow indicate a possible transition to the next
node.

One traditionally distinguishes two types of nodes: initial nodes and final nodes. Each graph must
have an initial node, which indicates a valid entrance point, and one or more final nodes which
indicate the states on which the course can be completed. When no transition starts from a state,
this last is implicitly regarded as terminal by the program.

In addition of the two types evoked above, the nodes are divided into three categories:

e Normal: The node of graph represents a character string. Certain sequences of
letters can have a particular significance.

e Subgraph: This state causes a jump in another graph. The character string of the
state represents the exact name of the graph. When the generator meets such a
state, it jumps towards the specified graph, the crosses completely, and then begins
again starting from this state.

e Commands: A command makes it possible to assign a value to a variable, do
computations, make various tests to condition the process of generation, and
execute embedded functions. The commands are the most complex part to
apprehend, but remain necessary to create the most advanced generators.

1.1 Add node to the graph

You will click on the bottom of the graph, then on the right button of the mouse to reveal a
contextual menu, and will select "Add a state". A node containing the default value "Node" is then
added on the place where you clicked.

VDOM Technology / Power Pack

Add a state
Paste

Figure 2: Add a state to a graph

1.2 Modify a node value

You will double click on the node. The node is then replaced by a zone of editable text. You
will be able to then modify its contents, then it will validate while pressing on the "Enter" key, or
while clicking elsewhere on the graph. It is possible to cancel the modification in progress while
pressing on the key of exhaust ("ESC" or "ESCAPE").

1.3 Modify a node type

The user will position the pointer of the mouse on a node, then click-right. A contextual
menu will appear then. The user will choose the suitable type then.

Add a transition
Delete

Copy

Initial
Terminal

Normal
Sub Graph
Command

Figure 3: Change the node Type : last part of the menu

1.4 Add a transition

As previously, the user will click right on a node, then it will choose the option "Add a
transition". An arrow appears then, and follows the pointer of mouse. The user will choose a target

7 e

VDOM Technology / Power Pack

node then, and will click above to add a transition which goes from the first node to this one. To
cancel, he will click on the bottom of the graph, at a place without node.

Node 1
Add a transition

Delete
Copy

Initial
Terminal

Normal
Sub Graph
Command

Figure 4: Process to create a transition
1.5 Manage graphs

The user will be able to add and erase graphs while respectively clicking on the buttons "Add
a graph" and "Erase" located at the top of the list of the graphs available. The user will click on the
elements of this list to select and publish a particular graph.

DESCRIPTION OF A NODE KNOWN AS "NORMAL"

A normal node of graph (represented graphically in black letters on white zone) contains a
simple character string. This character string is taken again just as it is during the process generation
time, and a space is added automatically between each state during the generation.

Some special letters sequences (begin with '\ ' or ' $ ') have a particular significance, and will
be interpreted during the generation:

Particular sequences:

\n: This sequence will be replaced by a line jump.

\t : This one by tabulation.

\r : This one by carry return.

\- : When this sequence appears, it will be erased and any space located before or
after will also be erased. That in particular makes it possible to stick two states
together, when for example one ends in an apostrophe, or starts with a comma or a
point.

VDOM Technology / Power Pack

VARIABLES REPLACEMENT:

It’s also possible to insert the value of a variable by specifying it like this: SVariable. For

example in the chain "The $SObjet", "SObjet" will be replaced by its value. The replacement is carried

out generation progressively, and the variable is replaced by its value at the time when the state is

traversed.

types:

1.6 Commands

The command makes it possible to execute complex operations. They are divided into two

= Test commands: they make it possible to prevent the generator from passing
by a transition if the test is not checked.

= Other operations: any command which is not a test is simply executed when
the generator passes by the state which contains it. These operations can
assign a value to a variable, execute a calculation, or jump to another graph.

DATA TYPE:

The commands handle data which can be literal variables or values.

The literal values can be a list of letters or numbers, or an unspecified sequence of
characters put between quotation marks.

The variables are always prefixed by the sign * S ', and are made up of letters,
numbers, or the sign * _ ' (underlined). For example Stoto, Svar, Si is valid variables.

The variables are not typified, and can contain as well character strings as whole
numerical values. The interpreter does automatically the choice which is appropriate
according to the values. For example 3 + Stoto will correspond to an addition if Stoto
contains a numerical value, and with a concatenation of the chain "3" and contents of the
variable Stoto if the latter contains a chain.

List manipulation allow the system to create dynamically function to evaluate, a List
is define like this [eltl elt2 ... eltn]. The element of the list can be string or other lists.

The elements of a list are separated by a space char 4 types of element can be
manipulated:

e Word: a word is a sequence of ascii char with no space. Like [MyWordl
MyWord?2 ..]

e String: a string is an element which start with ' and finish with the same ', inside
this sequence with use this escape sequence \' and \\.

VDOM Technology / Power Pack

e List: List can contain sub list, a sub list begin with [and finish with], of course
inside this list all the type can be used.

e Variable: A variable start with $ with only ASCII char the end of this variable will
be the next space. The function Evaluate will replace in list the list evaluated all
variable by their value, but the other functions (GET,PUT,UPDATE,...) will return
the string representing the variable

A special function [Evaluate SList] will allow the command node to evaluate the list given
in parameter.

1.7 The tests

A certain number of tests are available, and are described in the table below.

Operator Description Example
== Test the equality between two operands. $toto == ""truc"”
$tutu == 3
1= Test the inequality between two operands. $toto '= "machine"
$tutu = 2443
< Test the relation of inferiority between two operands. ~$toto < 3
3 < $tutu
<= Test the relation "inferior or equal" between two $toto <= 3
operands. 3 <= $tutu
< Test the relation of superiority between two operands. $toto > 3
3 > $tutu
>= Test the relation "superior or equal" between two $toto >= 3
operands. 3 >= $tutu
11 OR: the relation is true so at least one of the two ($toto >= 3) || B >=
operands is true. $tutu)
&& AND: the relation is true if the two operands are true. 3(5$t0t0 >= 3) & (3 >=
tutu)

The test result is always 0 (False) or 1 (True).
ASSIGNMENT:

Assign a value to a variable name. The assignment is done with the sign = in the following
way: SVARIABLE = EXPRESSION with VARIABLE the name of the variable, and EXPRESSION an
unspecified expression, a variable, character strings, or a whole numerical value.

1.8 Operations

They make it possible to calculate values according to the operator and operands. The
operations available are as follows:

10

VDOM Technology / Power Pack

Operator Description Example

+ Addition, if the two operands are numerical values, and 3+5 o
concatenation of chains if one of the two operands is character Sfoift-:tltl
strings.

- Subtraction, applies only to numerical values. 2133 - 5

= Multiplication, applies only to numerical values. 532 * 873

/ Division, applies only to numerical values. 100 7 9

% The modulo, applies only to numerical values, and makes it possible 100 % 9

to obtain the remainder of division.

1.9 Functions

A function is an embedded process that returns a value. A function is always presented
between hooks in the following way: [name ARG...]

This is some basic functions commonly used:

e [sub GRAPH]: The function sub makes it possible to call a particular graph. The
function returns like value the text generated by the graph. This text is not inserted
in the result; it is just affected with the value of the function.

Example Explanation
The graph "subGraph" is called, and the variable Shom takes as value

$nom = [sub subGraph] the text generated by this graph.

e [sub GRAPH paraml param2 ... paramN]: This function will extend the function [sub
GRAPH] the paramX will define the value of SparamX variable inside the GRAPH, the
integer after param is defined by its position inside the List, 1 is the first param after
GRAPH name. If the X value is out of range the value set will be null. This variable are
local to the graph it means that SparamX is only set by the value given to the
function even if a variable SparamX is set in the calling graph or upper.

Example Explanation
The graph "GraphName" is called, and the variable Sreturn
takes as value the text generated by this graph. With this
variable defined like this:

e Sparamil==1 > Numerical

e Sparam2=='a string' > String

e Sparam3==SvName > Same type as SvName

$return = [sub GraphName 1
"a string® $vName]

e [subprefix GRAPH PREFIX]: The function subprefix allows, just like the function sub
to call a particular graph, but in this case, all the variables name affected by this
graph are modified, and a prefix is added. The first argument of the function is the
name of the graph, and the second argument is the préfix added to all the names of
variables used in the left part of an assignment (in Sval = Sv1 + $v2), Sval is known as
the left part, and Sv1 + Sv2 is known as the right part).

11

VDOM Technology / Power Pack

Exemple
[subprefix nomcomplet heros]

$val = [subprefix nomcomplet heros]

Explanation

The graph "nomcomplet" is called, and the word
"heros" is used like prefixes of all the variables
calculated in the graph. If for example the graph
calculates two variables, Snom = "Valjean", and
Sprenom = "Jean", then with leaving the graph, the
variables Snom and Sprenom will not have been
affected.

On the other hand, the two variables herosnom and
herosprenom will have taken respectively the
values "Valjean" and "Jean".

As for the preceding example, the variables
calculated in the graph "nomcomplet" take the
prefix "heros", but in more all the text generated
normally by the graph is affected with the variable
Sval.

e [question 'the question' '*' or lists answers possible or '#()'] : The function question
makes it possible to raise a question with the user at the time of the execution of the
generator, the answer is turned over in the graph as a value which one can assign to

a

variable.

Question allow also to upload file from user Hard Disk, in this the second argument
has to be #() or #(mask), if mask is provided like *.jpg or *.* the windows will allow to
select only the file witch fit with the mask.

Example
$Ste = [question "What is the name
of your company” "*"]

$Color = [question "Choose a
color” "Red,Blue,Green"]

$FileName = [question "Select a
file® "#(*.%)"]

Explanation
At the time of the execution of the graph the
question is put and the engine is stopped until the
answer is recorded by the user. The variable SSte
then takes the returned value.
In this example the mechanism is the same than
the previous example, but in this case the user has
a choice between the tree value Red,Blue,Green.
This example show how to get a file name from the
question to use it next in the graph.

e [convert 'type' 'VALUE'] : This function convert the VALUE into the type defined by

the type parameter.

12

VDOM Technology / Power Pack

Type Description Example
HexColor HexColor makes it possible to transform a color represented =~ #000000

in Hexadecimal form into integer value. >0
IntColor |ntColor do the opposit function than HecColor 0
->#000000
Base64 In this case VALUE represent a file, the system read itand ~ [convert "Base64”
convert it into a Base64 format. -/10go.jpg” 1

o [writeTo 'FileName'] : The function makes it possible to write the result of the
current state of the graph into a file whose name is specified by FileName, it can be a
chain or a variable. The closing of the file is carried out at the time of the opening of
another file or at the end of the execution of the graph.

o [writeVarTo 'FileName' 'VALUE'] : This function write the VALUE parameter into a
file specified by FileName.

e [guid]: This function return a unique identifier compatible with the internal VDOM
unique Ildentifier.

1.10 Advanced variable declaration

It is possible to put a variable like name of variable, so as to cause a double dereferenciation.
For example S${Stoto}, if "xxx" is the value of Stoto, it will be equivalent to Sxxx. It is possible to put
complete expressions between the {}. For example: ${Stoto + "-" + S{titi+1}} is a valid name of
variable.

2. VDOM XML File.

2.1 Description of the different XML sections.

<?xml version="1.0" encoding="1S0O-8859-1" ?>

<Application>
<Information>
<Active>1</Active>
<Description>-</Description>
<ID>ab579906-5eed-4626-bc53-4cc27786b37c</ID>
<Index>f4fa85a0-b0fb-4425-b135-d2709d887bca</Index>
</Information>
<Structure>
<Object ID="f37a20e4-873c-48b0-94c6-744929afac7c" Top="0" Left="0" ResourcelD="">
<Level Index="0" />
</Object>
<Object ID="f4fa85a0-b0fb-4425-b135-d2709d887bca" Top="0" Left="0" ResourcelD="">
<Level Index="0">
<Object ID="a8ac0f13-4f0d-46ce-9f3e-aaf49615b858" />

13

VDOM Technology / Power Pack

<Object ID="7ed82bdf-aef7-4176-a571-0f5fa6799ae4" />
<Object ID="69e12547-a4f5-4032-a09e-4c5fc40757ca" />
<Object ID="c3be8d80-c021-40d2-9d5f-73aeed41leaa2" />
<Object ID="6bedf832-2aaf-40bb-9063-237f0bd7eadl" />
<Object ID="3f5d9839-d3ec-48fa-b3d2-fd5008b04bd9" />

</Level>
</Object>
</Structure>
<Objects>

<Object ID="a8ac0f13-4f0d-46ce-9f3e-aaf49615b858" Type="2330fe83-8cd6-4ed5-907d-
11874e7ebcf4" Name="object_aB8ac0f13_4f0d_46ce_9f3e_aaf49615b858">
<Attributes>
<Attribute Name="title">Contacts</Attribute>
<Attribute Name="hierarchy">1</Attribute>
<Attribute Name="visible">1</Attribute>
</Attributes>
<E2VDOM>
<EVENT objSrcID="name="" XPosition="10" YPosition="20" >
<ACTION objTgtID=" methodName="name’ XPosition="40’
YPosition="40">
<PARAMETER scriptName="MyParameter’></ PARAMETER>

</ACTION>

</EVENT>
</E2VDOM>
<Objects>

<Object Type="0d36¢35d-9508-440f-bfec-668f3db8cfeb" ID="c0ad24a3-27h9-
4687-9f81-ef50c9b1a920"
Name="object_cOad24a3_27b9 4687_9f81 ef50c9b1a920">
<Attributes>
<Attribute Name="visible">1</Attribute>
<Attribute Name="height">41</Attribute>
<Attribute Name="value">#Res(3c58c602-c358-4af0-a2ab-
abbe783a65al)</Attribute>
<Attribute Name="width">840</Attribute>
<Attribute Name="top">727</Attribute>
<Attribute Name="zindex">7</Attribute>
<Attribute Name="hierarchy">2</Attribute>
<Attribute Name="left">0</Attribute>
<Attribute Name="visible">1</Attribute>
</Attributes>
<Objects />
</Object>
</Objects>
<Resources>
<Resource Type="gif" ID="3c58c602-c358-4af0-a2ab-a6be783a65al" Name="3c58c602-c358-4af0-
a2ab-a6be783a65al">
<I[CDATA[
ROIGODIhSAMpAPcAAOPK5urs7uzq7+fobu/w8tra2+zs7vb2+0Ojm6u7w8tvc3fj5+uTm6N
90bk6PX29tze4PP09eTi5vf4+eDi503r8Pn6+/v8/ODf4vDt8uTI6O/s8vHy8+3u7u3s80Lh
5Pb3+ejp70Tm5/X29+Lg4/Lu90fm6t7f4tzd407w8e7s7+bk5+/u8vb19
1>
</Resource>
<Resource Type="jpg" ID="2e0a791d-65b4-4616-9002-3e61c6d37dcc" Name="2e0a791d-65b4-
4616-9002-3e61c6d37dcc" >
<I/[CDATA[
kZJRgABAgAAZABKAAD/7TAARRHVja3KAAQAEAAAAPAAA/+4ADKFkb2JIAGTAAAAAA
EBAUEBgUFBgkGBQYJCwgGBggLDAoKCwoKDBAMDAWMDAwWQDA4PEASBODBMTF
GxscHx8fHx8fHx8fHWEHBwWCcNDAOYEBAYGhURFRofHXx8fHx8fHx8fHx8fHX8fHX8.....
11>

</Resource>

14

VDOM Technology / Power Pack

</Resources>

</Application>

e <Application>: Main tag starting the application section.
o <Information>: General information about the application.
. <Active> : Is this application will be considered as an active one or not.
= <Description>: Test description of the application.
. <ID>: Unique identifier of this application.
. <Index>: Witch Top Level container is the default one.

0 <Structure>: Section describing the link between the top level containers. This section stores the
architecture of the application. The structure is a collection of top level container connected with
arrows that define a source object and a target one.

= <Object ID=" Top='x" Left="y’ ResoucelD="Guid’> : This is the source object of this
structure, ID is the reference of the object, Top|Left give the position in the IDE and
ResourcelD represent the picture associate the this top level container in the IDE.
. <Level Index="n">: The connection between the objects can be done thru
multiple group of links (7), index represent the group of this links.
0 <Object ID="Guid’ />: Target object, ID is its reference.

0 <Objects>: This section describe the object structure of the VDOM Application, this structure is a
hierarchical composition of objects, on the first level we have the Top Level object that the main
container and can represent the page. In fact it's the only object that you can reach thru url. Inside this
upper level container you can have an infinite depth of object construction.

= <Object ID="Guid’ Type='Guid’ Name='???"> : First level object, it means this one is a
Top Level container, not all object can be Top Level container, you have for example
HTML,Flash, PDF, etc ... This is define in the object TYPE.

. <Attributes> : Attributes section of this object, each object has a collection of
attributes, this section define the value of each one.

o0 <Attribute Name="???7?" >: An attribute, the name has to correspond
to the name defined in the Object Type.

o <E2VDOM?=> : Each container can implement an event driven behaviour, this
section define the event processed by the engine and the action associated but
only for the client -> client type, the client -> server -> client event are managed
inside the script.

o <Event objSrcID="Guid’ name="??7?" XPosition="xx’
YPosition="yy’>: Event catch by the engine, objSrcID is the reference
of the object that can raise this event, the object can’t be inside an other
container. XPosition & YPosition define the position in the IDE.

] <Action objTgtID="Guid’ methodName="name’
XPosition="xx" YPosition="yy'>: One or more action
associated to this event.

e <Parameter scriptName="MyParameter’>: If this
action allow parameters this tag define the value.

. <Objects>: Second level of objects can be terminal object or container.

0 <Object ID="Guid’ Type="Guid’ Name="??7?">: Define the
characteristics of the object.

] <Attributes>: Attribute section of this object.

. <Attribute Name="???">Value of each attribute.

0 <Objects />: If there is a new level of object this is the start of this new
section, if there is not this tag can be used but it's optional.

0 <Resources>: The VDOM XML application file save also the binary resources, to fit with a text format
each resources are converted in Base64 format. This tag define the start section of resources.
] <Resources Type="???" ID="Guid’ Name="????'><I[CDATA[Base64 data]]>: One
resource, type define the original file type like jpg,gif,etc ... ID is the internal GUID for
reference and name is a friendly one which is used in the resources browser.

2.2 General graph & Matrix importation of the XML structure

MAIN GENERAL GRAPH

15

VDOM Technology / Power Pack

The importation from XML will generate several Graphs with a logical Structure, the first high
level structure is the general application Graph, the name of this main Graph will be
VDOMApplication and it is shown on Figure 4.

It represents the mains XML node of the VDOM XML Application file, the application start
with <Application> and then we have the node <Information>, no option is given for the <Active>
node that it switch to 1.

|<?xm| version="1,0" ?:>-|

!

=Application>

<Active>1</Ackive>
A

tRep=[question 'Do you want to persanalize the Application Description' "ves,Ma']

<Descripti0n><![CDATA[$DescriptiDn]]:>|

|

$Index=[EUID]

|

|<Index>$1ndex<f1ndex>|

|

=/ Information=

=" £5tructure

l

}

“Resources>$ResourcesSection</Resaurces>

l

<fApplication>

Figure 4: General Application Graph

16

VDOM Technology / Power Pack

The first option that can be defined by the user is the Description of this application; we give
the opportunity to the user to input his own description.

In the XML file the node index define the first Top level container that will be shown if the
URL doesn’t define it. This GUID is unknown at this stage because the object section comes after, so
we generate a GUID to be used after as one of a Top level container to set it as the HOME PAGE.

Next we initialize two variables that will be used to store the structure and Resources data.
Those information are generated during the process of object section generation, to be flexible we
are not going to write (Structure/Resources) as static graph but as a structured data stored in a
variable to be able to modify it easily after the importation.

RESOURCES DATA

The resource section will be stored in SResourcesSection variable, the importation will use
one sub Graph to set the value.

I{Resnurce Type="$Type" ID="$ID" Name="$Fi|eName"}|

l

[<1[coaTAl$Data11>]

=/Resource=

Figure 5: SetResource Graph

The Figure 5 show the simple graph to generate the Resource node of the XML file, we can
see several variables $SType, SID, SFileName and $Data. The calling graph has to set them before the
call like on Figure 3. All the data come from the VDOM Application XML File.

17

VDOM Technology / Power Pack

$Temp=[sub SetRezource]

$ResourcesSection=%ResourcesSecion+$Ternp

Figure 6: General Call to generate Resources XML Node

An alternative graphs use the enhanced [Sub ...7] function. The following example
(Figure 7) show the same graph as figure 6 using SparamX variable.

|{Resnurce Tepe="$paraml" ID="fparam2" Name="$param3">

|<1[coaTal$paramd]]>]

=/Resource>

Figure 7: SetResource Graph using param

18

VDOM Technology / Power Pack

ZIR.gAaBAgAnZ AR s Dy 7R R Hwjaz PR AEASSAP ey +4aDkFlb2ala,, "

$ResourcesSection=%RezourcesSection+$Ternp

Figure 8: Graph Call using enhanced sub function

STRUCTURE SECTION

The structure section define how the Top Level Containers are connected each other, this is a
XML example of this section.

<Structure>
<Object ID="760b051c-e0f3-430c-9d5a-a07831275d6a" Top="0" Left="0" ResourcelD="">
<Level Index="0">
<Object ID="90fa5627-ee08-4d4e-aa41-75682f2dc142" />
</Level>
</Object>
<Object ID="3739e938-0559-4358-bb5d-e72d0c4f6e7a" Top="0" Left="0" ResourcelD="">
<Level Index="0">
<Object ID="1e8019d0-3213-4f07-9007-fadf382ceb85" />
<Object ID="ec9494fe-e5cc-4a9e-9012-8b5a04f58762" />
<Object ID="cfd4ec7aa-edf6-4561-9aeb-ac4fc6e3258e" />
<Object ID="5324bda5-f053-46d4-8141-e123eb8b4cee" />
<Object ID="760b051c-e0f3-430c-9d5a-a07831275d6a" />
<Object ID="60dd6a22-b502-4121-aef8-b15116d5327e" />
</Level>
</Object>
<Object ID="78bd0bcc-70a8-4593-a559-dcedd2635e03" Top="0" Left="0" ResourcelD="">
<Object ID="78bd0bcc-70a8-4593-a559-dcedd2635e03" />
</Level>
</Object>

</Structure>

19

VDOM Technology / Power Pack

The graph conversion of this structure will be split in two parts, a graph witch manipulate de
data structure during the object section generation and a graph engine that will convert the data
structure into XML structure.

LiIsT DATA STRUCTURE

The PowerPack Generator is able to manipulate List data structure, so it will store all
the structure into Lists and sub Lists.

- Main List -
[TopLevelList 1 TopLevelList 2 ... TopLevelList n]
TopLevelList_x(List): Sub list of each Top level container.

- TopLevellist_x -
[ObjectSrcList LevelLinkList]
ObjectSrcList(List): Sub list representing information about the top
level container source of the link.
LevelLinkList(List): Sub list representing the level number and all the
targeted Top Level Container

- ObjectSrclList -
[IdObject Top Left ResID]
IdObject(Word) : Top Level ID Source object

Top(Word) : Top position of this object

Left(Word) : Left position of this object

ResID(Word) : Resource ID of the picture shown on tree extended
mode.

- LevellLinkList -
[Level 0 ObjTgtList Level 1 ObjTgtList ..
Level n ObjTgtList]
Level x_ObjTgtList(List) : The sub list with level value and list of
targeted objects.

- Level_x_ObjTgtList -
[Level ObjTgtList]
Level(Word): Integer representing the level link.
ObjTgtList(List): Sub list of targeted objects.

20

VDOM Technology / Power Pack

- ObjTgtList —
[IdObjTgtl IdObjTgt2 ... IdObjTgtn]
IdObjTgtx(Word): GUID representing the targeted object.

GRAPH ENGINE TO ADD/UPDATE/REMOVE DATA IN GRAPH LIST STRUCTURE

The graph will be called by this sub function:
[Sub AddStructure ObjSrc ObjTgt Level [StructurelList]]

Figure 9: Graph Engine to add a New Link to the Structure
Others sub graph useful in the case of importation:

[Sub UpdateStructure ObjSrc ObjTgt Level [Structurelist]]: This subGraph updates
the level link between the two objects.

[Sub DeleteStructure ObjSrc ObjTgt Level [Structurelist]]: This SubGraph deletes a
link between two objects.

21

VDOM Technology / Power Pack

Power Pack Advanced functions

In a normal Web application most of time there is a lot of pictures and
it could be sometimes needed to be able to manipulate this pictures
this is the goal of the graphic functions. The power pack needed also to
have an internal data structure with enough function to manipulate it,
this is the goal of list functions.

1. Advanced graphic functions

The function structure is the same than the other functions like this: [NOM ARG ...
Until now the variable could be two types Number or String, even if we still work with only this two
type to manipulate pictures, it’s better to introduce something like a pointer to an internal object
that represent the picture.

The input format of the picture can be JPG,BMP,PNG,GIF the output format will be PNG.

SUB-LIST USED AS PARAMETERS FOR FUNCTIONS :

e [Pen PenColor PenStyle PenWidth] : This function define the pen used for functions witch
use it.
PenColor : Numeric value from 0 to 16777215 for a depth of 24 bits
PenStyle: Define the style of the pen regarding the following table.

0 -Solid Solid Line
1 - Dash A line made up of a series of
dashes. T _
2 — Dot A line made up of dots
3 — DashDot A line made up of alterning

dashes and dots.

4 — DashDoDot A line made up of a serious of
dash-dot-dot combinations.

5 —_Clear No line is drawn (used to omit
the line around shapes that draw
an outline using the current pen).
6 — InsideFrame | Asolid line, but one that may use
a dithered color if Width is
greater than 1

22

VDOM Technology / Power Pack

PenWidth : Define the size in pixel of the pen.
e [Brush BrushStyle BrushColor] : This function define a brush style to fill a form

BrushStyle :

1 - Clear

2 — BDiagonal
N
3 — FDiagonal
%

4 —Cross

5 — DiagCross

6 — Horizontal

7 — Vertical

BrushColor : Numeric value from 0 to 16777215 for a depth of 24 bits

e [GradiantOneWay BeginColor EndColor Direction] : Generate a one Way gradient from the
color BeginColor to the EndColor with a direction define in degree 0 mean Horizontal
gradient.

e [GradiantTwoWay BeginColor EndColor Direction] : Generate a two way gradient from the
color BeginColor to the EndColor with a direction define in degree 0 mean Horizontal
gradient.

e [Texture $ObjectPicture] : Define a texture to fill the form.

o [Filter]:

BevelFilter, BlurFilter, ColorMatrixFilter, ConvolutionFilter, DisplacementMapFilter,
DropShadowfFilter, GlowFilter, GradientBevelFilter, GradientGlowFilter

e [Font ‘Name’ Size Color Bold Italic Underlined] : Define a font used by any function using
text.

MAIN GRAPHIC FUNCTIONS :

e [LoadPicture ‘Path’] : This function allow to load into memory a picture from file it
return a pointer into the variable witch it used for other manipulations.

Example Explanation
$0ObjPicture = [LoadPicture " ./Mupicture.Jpg”] Load a picture from file.

23

VDOM Technology / Power Pack

[CreatePicture Width Height BackgroudColor] : This function create a new empty
picture with the color set by BackgroudColor (numeric value), it return the pointer to
the Object created.

L Example Explanation
$0bjPicture = [CreatePicture (reate a picture of 100x100 pixels with a
100 100 O]

Black background

[GetWidth $ObjPicture] : Return the width of the picture stored in SObjectPicture.

Example Explanation
$PWidth = [GetWidth $ObjPicture] As explained get Width !!!

[GetHeight SObjPicture] : Return the hieght of the picture stored in SObjectPicture.

Example Explanation

[AddPicture $ObjPicturel SObjectPicture2 X Y Transparency TransparencyColor] :
Add image $SObjectPicture2 to SObjectPicturel located to X Y.
Transparency : Percentage of transparency of the Picture2 on the Picturel
TransparencyColor : Define the transparent color of the Picture2

Example Explanation

$0bjPct = [AddPicture This function return a pointer to a picture

HlEPIErE A0 19 70 2228 object, if the variable is the same the
function will modify the current object
picture.
Transparency is 70 %, the range is from 0
to 100, 0 means no transparency and 100
means full transparency.
Color is the int value of the equivalent Hex.

[DrawAngleArc $ObjPicture X Y Radius StartDegrees SweepDegrees Pen Fill] : The
DrawAngleArc function draws 2 lines segment and an arc. The line segment is drawn from
the X,Y position to the beginning of the arc. The arc is drawn along the perimeter of a circle
with the given radius and center (X,Y). The length of the arc is defined by the given start and
sweep angles. Pen is defined by the Pen function and Fill by any function that witch define a
content.

24

VDOM Technology / Power Pack

Example
$0bjPct = [DrawAngleArc
$0bjPicture 100 100 50 0 90
[Pen O O 1] [Brush O
1677696077

Explanation

This Draw Angle Arc located on X,Y

XY

SweepDegrees

Radius

|

StartDegrees T

e [Blur $ObjPicture Times] : Apply a blur filter to the picture, times parameter define
how many times this effect will be apply to the picture.

Example

$0bjPct = [Blur $ObjPicture 5]

Explanation

"
.y |] L 23"

Picture after blur filter

[Brightenimage $ObjPicture Degree] : Transform the current picture by increasing or

decreasing the luminosity level, positive number increase, negative one decrease.

25

VDOM Technology / Power Pack

Example Explanation
$0bjPct = [Brightenlmage 3 mﬁ:ﬂu-"u;ﬂy
$0bjPicture 100] g

J (RL R . " !-'f

Picture after Bright filter

e [Contrast SObjPicture Degree] :

e [CreateBlackWhite $ObjPicture] :

e [CreateGrayScale $ObjPicture] :

e [CreateNegative SObjPicture] :

e [Croplmage $ObjPicture StartX StartY Width Height] :

o [Darkenimage $SObjPicture Degree] :

e [Emboss $ObjPicture] :

e [Merge $ObjPicturel $ObjPicture2 Percent] :

e [DrawEllipse $ObjPicturel X1 Y1 X2 Y2 Pen Fill Transparency] :

e [DrawRect $ObjPicture X1 Y1 X2 Y2 Pen Fill Transparency] :

e [Fliplmage $ObjPicture Direction] :

e [Getimage FileSize ‘PathFile’] :

e [GetPixel $ObjPicture X Y] :

e [DrawlLine $ObjPicture X1 Y1 X2 Y2 Pen Transparency] :

e [DrawBezier SObjPicture [[X1 Y1] [X2 Y2] [Xn Yn]] PenStyle Pen Transparency] :
e [FillBezier $ObjPicture [[X1 Y1] [X2 Y2] [Xn Yn]] PenStyle Pen Fill Transparency] :
e [DrawPolygon $ObjPicture [[X1 Y1] [X2 Y2] [Xn Yn]] Pen Fill Transparency] :

e [FillPolygon $ObjPicture [[X1 Y1] [X2 Y2] [Xn Yn]] Pen Fil Transparency] :

e [DrawPolygon $ObjPicture[[X1 Y1] [X2 Y2] [Xn Yn]] Pen Fill Transparency] :

e [Resize $ObjPicture Width Height] :

e [ResizeResampling $ObjPicture Width Height] :

¢ [Rotate $ObjPicture Degree BackGroundColor] :

e [DrawRoundRect $ObjPicture X1 Y1 X2 Y2 PenStyle PenColor FillColor Transparency] :
e [Saturation $ObjPicture Degree] :

26

VDOM Technology / Power Pack

e [SetPixel $ObjPicture X Y Color] :

e [Saturation $ObjPicture Value] :

e [WriteText SObjPicture X Y Width Height Font FontColor FontSize Transparency TextAlign
Bold Italic] :

2. Advanced List manipulation functions

Before defining this function we have to define the Position parameter in a list.
Position: Can be an integer and the value define the position is like this [Pos:1 Pos:2 ...
Pos:n] or Head/Tail, Head position is like Integer value 1, Tail has different value
depending the function, for GET/UPDATE it’s the element with position n (the last one),

for PUT function it’s n+1, it means we add a new element at the end of the list.

o [Get Position [List]] : Return the elt of the list at the position given by Position

parameter.

Example Explanation
$elt = [Get 2! [eltl elt2 elt3]] This example return the value elt2
$elt = [Get 'Head' [eltl elt2 elt3]] This example return the value eltl
$elt = [Get "Tail' [eltl elt2 elt3]] This example return the value elt3

e [Put Type Position Value [List]] : Put the value at the position indicated by Position
parameter and move all the other element to the left, if tail is used it add the
element at the end of the list. All the parameters are String except the list.
The Type parameter define in which type this value will be added:

o 1- Word

0 2- String

o 3- List

o 4- variable

Example Explanation

$elt = [Put '1' '2' 'eltN' [eltl elt2 elt3]] The result in Selt variable is [elt1 eltN elt2 elt3]
$elt = [Put '1' 'Head' 'eltN' [eltl elt2 elt3]] The result in Selt variable is [eltN elt1 elt2 elt3]
$elt = [Put '1' 'Tail' 'eltN' [eltl elt2 elt3]] The result in Selt variable is [elt1 elt2 elt3 eltN]
$elt = [Put '2' '2' 'eltN' [eltl elt2 elt3]] The result in Selt variable is [elt1 'eltN' elt2 elt3]
$elt = [Put '3' '2' 'eltN eltM' [eltl elt2 The result in Selt variable is [elt1 [eltN eltM] elt2
elt3]] elt3]
$elt = [Put '4' '2' 'eltN' [eltl elt2 elt3]] The result in Selt variable is [elt1 SeltN elt2 elt3]

¢ [Update Type Position Value [List]] : The update function replace an element of the
list by another one, all the parameters of Get function are the same here, type value,
position is an integer or Head/Tail, value is a string.
27

VDOM Technology / Power Pack

Example
$elt = [Update '1' '2' 'eltN' [eltl elt2 elt3]]
$elt = [Update '1' 'Head' 'eltN' [eltl elt2 elt3]]
$elt = [Update 'Tail' 'eltN' [eltl elt2 elt3]]

$elt = [Update
$elt = [Update

elt3]]

2' 'eltN' [eltl elt2 elt3]]
2' 'eltN eltM' [eltl elt2

WNRERER

$elt = [Update '4' '2' 'eltN' [eltl elt2 elt3]]

Explanation

The result in Selt variable is [elt1 eltN elt3]

The result in Selt variable is [eltN elt2 elt3]

The result in Selt variable is [eltl elt2 eltN]

The result in Selt variable is [elt1 'eltN'

[
[
[
[

elt3]

The result in Selt variable is [eltl [eltN eltM]

elt3]
The result in Selt variable is [elt1 SeltN

elt3]

o [Delete Position [List]]: The function delete remove an element at the given position.

Position support integer and Head/Tail value.

$elt
$elt
$elt

Example

[Delete '2' [eltl elt2 elt3]]
[Delete 'Head' [eltl elt2 elt3]]
[Delete 'Tail' [eltl elt2 elt3]]

Explanation
The result in Selt variable is [elt1 elt3]

The result in Selt variable is [elt2 elt3]
The result in Selt variable is [elt1 elt2]

e [Length [List]]: This function return the number of element inside the given List.

$elt
$elt

Example

[Length [eltl elt2 elt3]]
[Length ['eltl' $elt2 [elt3 elt4] elt5]

Explanation
The result in Selt variable is 3
The result in Selt variable is 4

e [GetType Position [List]]: This function returns the integer value representing the

element type inside the given List at Position.

Type value returned by this function.

(0]

(o}
(¢}
o

1- Word

2- String
3- List

4 - Variable

Example

$elt = [GetType 'Head' ['eltl' $elt2 [elt3 elt4]

elt5]]

$elt = [GetType '2' ['eltl' $elt2 [elt3 elt4]

elt5]]

$elt = [GetType '3' ['eltl' $elt2 [elt3 eltd]

elt5]]

$elt = [GetType 'Tail' ['eltl' $elt2 [elt3 elt4]

elt5]]

Explanation
The result in Selt variable is 2

The result in Selt variable is 4
The result in Selt variable is 3

The result in Selt variable is 1

e [Mid Start Length ‘String to cut’]: Return a part of the string beginning at the start
char (0 is the first value) with a length of length char.

28

VDOM Technology / Power Pack

[Split 'delimiter' 'String to split’]: Return a list of elt like [elt1 elt2 ... eltn] using the
delimiter as character for spliting.

[Exist Type Value [List]]: Return O if this value doesn’t exist in the current list or the
position of the elt matching in the list.

29

VDOM Technology / Power Pack

Power Pack Debug Mode

The implementation of Complex Graph in the Power Pack Builder could
represent a difficult task, just running the graph to see the result is not
enough to understand where your mistakes are. Moreover, some graphs can
run as infinite loop and completely freeze the software. To avoid such
trouble and allow the PowerPack developer to be efficient we need an
option of graph debugging.

The Debug option will take place in Run menu like it shown below:

File Template | Run | Settings Help
Run Ctrl+R
= = Debug Ctrl+D
Step by step Ctrl+B
application
Resume Ctrl+M
E Step into Ctrl+1
5 leA Step owver Ctrl+0
Break Ctrl+C
=1l B

Figure 10: Generator debug option.

When the (Debug) or (Step by Step) option is launched instead of Run, the PowerPack Builder
will execute the graph in debug mode:

30 ¢

VDOM Technology / Power Pack

File Template Run Settings Help

Variables
application

[5 1.0 2
) =
Name Value
$Rap o
<Application>
_ $Description VDOM XML File Dats ...
SampleApplication ‘
$Index ESS8CS00-44ES-0744-E121-77B318ACF
v this samplaapplication
Objects
-
-
Structure
$Description=[question 'Describe application' '*']
<Description><! [CDATA[$Description]]=]
$Index=[GUID] Il
<Index>sIndex</Index>
|
|
[186305A7-EER7-CBD7-62E8-7748EASAL42E 0 0 null]
Problems Properties Output v | Nodevalue >
0" 2> <Application> <Information> <Activa>1</Active> Node (Normal): <Index>ES98CS00-44E3-0744-E121-77B918ACF1DE</Index> =
DATA[VDOM XML File Data]]> <Index>ESS8CI00-44E9-0744-E121-
= > Node (Function Command): GUID => ES38CS00-44E3-0744-E121-77BILBACFLDE
container (x) E
— Node (Normal): <Description><![CDATA[VDOM XML File Data]]>
resources (=] Il
= MNode (Operation Command): $Des ion='"VDOM XML File Data'
Test [(x]

Hode (Test Command): $R:

Hode (Function Command): question => Ha

Figure 11: PowerPack builder debug mode window.

In debug mode there is 3 windows used, like it’s shown on figure 11, one Output witch show

the current graph output, the last text generated is colored in Red. A Node Value witch show an
historic track of each node cross with this information:

Node(Type):Output value of the node
Type can be:

0 Text ->for simple text node, the out is the text.
0 subGraph:

If not enter in sub graph the return is output generated by this graph
= [f enter in the sub Graph the return is Jump
subGraph(SubGraphName)
0 Command:

If it’s affectation the output value will be SvariableName="Value’ or
Value depend if it's numerical or string
= |fit's atest True or False

If it’s a function the value returned by the function.

31

VDOM Technology / Power Pack

The last window show all the variables already evaluated during the process.

During the debugging process, the Power Pack Graph Design show the progression, a blue

rectangle is lighting on the node which going to be evaluated and a highlight arrow is shown to

indicate which one was selected to reach this node.

The Key commands are this:

Crt+R:
Crt+D :
Crt+B:

Crt+M:
Crt+l:
Crt+0O:
Crt+C:

To run normally the Graph without Debug option.
To enter in debug mode and stop to the first Break point.
To enter in Step by Step mode.

To resume to normal process.

To go to the next step and enter in sub graph in the case of encounter one.
To go to the next step but not enter in sub graph

To break the normal process of graph.

32

	VDOM Server use XML file to describe and store a VDOM application, the Power Pack are designed to generate this file, this section will introduce why and how we do it.
	1. PowerPack Objectives
	1.1 VDOM Application & VDOM Box
	1.2 Graph oriented XML Generator

	This section will first introduce you the graph oriented design and then describe the VDOM XML file specification to allow you to generate it with the Power Pack Builder tool.
	1. Graph oriented modeling, functional description
	1.1 Add node to the graph
	1.2 Modify a node value
	1.3 Modify a node type
	1.4 Add a transition
	1.5 Manage graphs
	1.6 Commands
	1.7 The tests
	 1.8 Operations
	1.9 Functions
	1.10 Advanced variable declaration
	2. VDOM XML File.
	2.1 Description of the different XML sections.
	2.2 General graph & Matrix importation of the XML structure

	In a normal Web application most of time there is a lot of pictures and it could be sometimes needed to be able to manipulate this pictures this is the goal of the graphic functions. The power pack needed also to have an internal data structure with enough function to manipulate it, this is the goal of list functions.
	1. Advanced graphic functions
	2. Advanced List manipulation functions
	The implementation of Complex Graph in the Power Pack Builder could represent a difficult task, just running the graph to see the result is not enough to understand where your mistakes are. Moreover, some graphs can run as infinite loop and completely freeze the software. To avoid such trouble and allow the PowerPack developer to be efficient we need an option of graph debugging.

